Bernoulli , Euler , permutations and quantum algebras

نویسندگان

  • ANDREW HODGES
  • C. V. SUKUMAR
  • C. V. Sukumar
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Permutations and Bernoulli Sequences

— The so-called first fundamental transformation provides a natural combinatorial link between statistics involving cycle lengths of random permutations and statistics dealing with runs on Bernoulli sequences.

متن کامل

Enumeration formulas for Young tableaux in a diagonal strip

We derive combinatorial identities, involving the Bernoulli and Euler numbers, for the numbers of standard Young tableaux of certain skew shapes. This generalizes the classical formulas of D. André on the number of up-down permutations. The analysis uses a transfer operator approach extending the method of Elkies, combined with an identity expressing the volume of a certain polytope in terms of...

متن کامل

A Note on Rigidity for Crossed Product Von Neumann Algebras

In this note, we will point out, as a corollary of Popa’s rigidity theory, that the crossed product von Neumann algebras for Bernoulli shifts cannot have relative property T. This is an operator algebra analogue of the theorem shown by Neuhauser and Cherix-Martin-Valette for discrete groups. Our proof is different from that for groups.

متن کامل

Enumeration by kernel positions for strongly Bernoulli type truncation games on words

We find the winning strategy for a class of truncation games played on words. As a consequence of the present author’s recent results on some of these games we obtain new formulas for Bernoulli numbers and polynomials of the second kind and a new combinatorial model for the number of connected permutations of given rank. For connected permutations, the decomposition used to find the winning str...

متن کامل

Connections between Bernoulli Strings and Random Permutations

A sequence of random variables, each taking only two values ”0” or ”1”, is called a Bernoulli sequence. Consider the counts of occurrences of strings of the form {11}, {101}, {1001}, . . . in Bernoulli sequences. Counts of such Bernoulli strings arise in the study of the cycle structure of random permutations, Bayesian nonparametrics, record values etc. The joint distribution of such counts is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008